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Abstract. In this chapter we prove that a functional equation of the form

φ(x) = g(x, φ[f(x)])

has a unique solution under some assumptions and consider the problem of deter-
mining it (for that we use a classical theorem due to J. Matkowski). Furthermore, we
prove the set-valued analogue of Matkowski’s result.
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Introduction

The following chapter consists of two sections. In the first section we consider
a functional equation of the form

φ(x) = g(x, φ[f(x)]).

We apply the Schauder Fixed Point Theorem to show that this equation has a solution
under some conditions. Moreover, we consider the problem of determining its solution
with the help of the Banach Fixed Point Theorem. We prove that the Banach Principle
can be applied only in the linear case. The crucial result on which the proof of this
fact is based on, is a classical theorem due to J. Matkowski. In 1982 he showed
(cf. [11]), that a Nemytskij operator N mapping the function space Lip(I,R) into
itself is Lipschitzian with respect to the Lipschitzian norm if and only if its generator
is of the form
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g(x, y) = a(x)y + b(x), x ∈ I, y ∈ R,

for some a, b ∈ Lip(I,R). This result was extended to many spaces by J. Matkowski
and others (cf. e.g. [12]). Set-valued versions of Matkowski’s results were investigated
for instance in papers [3,6–9,15,17,21]. Recently Matkowski has shown (cf. [14]), that
if we only assume, that the operator N is uniformly continuous, then the generator g
is of the form above.

The second part of this chapter contains results from a paper by E. Mainka (cf. [9]).
The main goal of it is to prove the set-valued analogue of Matkowski’s result for
superposition operators mapping the set Hα(I, C) of all Hölder functions ϕ : I → C
into the set Hβ(I, clb(Z)) of all Hölder set-valued functions φ : I → clb(Z).

1. Fixed Point Theorems and Nemytskij operators

In the following we shall write I for a unit interval [0, 1] on the real line. If E,E′

are nonempty sets, then let us denote by F(E,E′) the set consisting of all maps from
E into E′. Real bounded functions defined on interval I form a Banach space B(I,R)
with the uniform convergence norm || · ||B(I,R). Real continuous functions defined on
I form closed linear subspace C(I,R) of B(I,R), therefore it is a Banach space. The
uniform convergence norm in it we denote by || · ||C(I,R). Moreover, the set Lip(I,R)
of all real functions defined on I and satisfying the Lipschitz condition with the norm
given by

||φ||Lip(I,R) := |φ(0)|+ sup
x1,x2∈I

x1 6=x2

|φ(x1)− φ(x2)|

|x1 − x2|
, φ ∈ Lip(I,R)

is also a Banach space.
Now let us consider functional equation

φ(x) = g(x, φ[f(x)]), (1)

where g : I × R → R and f : I → I are given functions. We seek for the solution
φ : I → R of equation (1).

Theorem 1.1. Assume that a function f : I → I satisfies the Lipschitz condition

|f(x1)− f(x2)| 6 s|x1 − x2|, x1, x2 ∈ I (2)

with the constant 0 < s < 1. Let f(0) = 0 and let g : I × R → R be a function for

which the inequality

|g(x1, y1)− g(x2, y2)| 6 p|x1 − x2|+ q|y1 − y2|, x1, x2 ∈ I, y1, y2 ∈ R, (3)

holds for p, q > 0 and let sq < 1. Moreover, let d ∈ R be a fixed point of the function

g(0, ·), i.e.
d = g(0, d). (4)

Then there exists exactly one solution of equation (1) in the class Lip(I,R), for which
φ(0) = d.
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Proof. Let Φ0 be a subset of C(I,R) consisting of all the functions φ, for which
φ(0) = d and which satisfy the Lipschitz condition with a constant k, where

k := p/(1− sq). (5)

It is easy to see that Φ0 is a convex and uniformly closed subset of C(I,R). More-
over, functions from the set Φ0 satisfy Lipschitz condition with a fixed constant (equal
to k). Hence Φ0 is uniformly bounded and constitutes an equicontinuous family of
functions. Thus Arzela-Ascoli theorem implies that Φ0 is a compact subset of the
space C(I,R). Now, let us define a map T : Φ0 → F(I,R) as follows:

T (φ)(x) := g(x, φ[f(x)]), φ ∈ Φ0, x ∈ I.

We are going to show that the range of T is a subset of Φ0. Let φ ∈ Φ0 and let
x1, x2 ∈ I. From (5) and from inequalities (2) and (3) we get

|T (φ)(x1)− T (φ)(x2)| = |g(x1, φ[f(x1)])− g(x2, φ[f(x2)]) 6

6 p|x1 − x2|+ q|φ[f(x1)]− φ[f(x2)]| 6 p|x1 − x2|+ qks|x1 − x2| 6

6 (p+ qks)|x1 − x2| = k|x1 − x2|,

thus T (φ) satisfies the Lipschitz condition with the constant k. Moreover, from (4) it
follows that

T (φ)(0) = g(0, φ[f(0)]) = g(0, φ(0)) = g(0, d) = d,

which finishes the proof of the fact, that T is a self-map of the set Φ0. Now we are
going to show that T is continuous. For this, assume that φ1, φ2 ∈ Φ0. From inequality
(3) we get

|T (φ1)(x) − T (φ2)(x)| = |g(x, φ1[f(x)])− g(x, φ2[f(x)])| 6 q|φ1[f(x)]− φ2[f(x)]| 6

6 q sup
x∈I

|φ1(x) − φ2(x)| = q||φ1 − φ2||C(I,R)

and in consequence

||T (φ1)− T (φ2)||C(I,R) 6 q||φ1 − φ2||C(I,R),

which implies the continuity of T . From Schauder Theorem we infer that T has a fixed
point φ0, which, on account of the definition of the set Φ0, is a lipschitzian solution
of (1) satisfying the equality φ0(0) = d. It remains to show that these conditions
determine a solution uniquely.

Let φ1 and φ2 be solutions of equation (1), for which φ1(0) = φ2(0) = d and which
satisfy the Lipschitz condition with a constant L. Let us define Q1, Q2 : I → R as
follows:

Qi(x) :=

{
(1/x)[φi(x)− d] for x ∈ (0, 1],

0 for x = 0,

for i = 1, 2 and let us note, that φi(x) = d+xQi(x), x ∈ I. Since φ1 and φ2 satisfy the
Lipschitz condition with the constant L, we obviously have |Qi(x)| 6 L, i = 1, 2, x ∈ I.
Thus (1) implies that
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d+Qi(x)x = g(x, d+ f(x)Qi[f(x)]).

Now define a map h : (0, 1]× R → R in the following way

h(x, y) :=
1

x
[g(x, d+ yf(x))− d]

and let us note, that for x ∈ (0, 1] we have

h(x,Qi[f(x)]) =
1

x
[g(x, d+ f(x)Qi[f(x)])− d] = Qi(x). (6)

Let x ∈ (0, 1], y1, y2 ∈ R. From (2), (3) and from the inclusion f(I) ⊆ I we get

|h(x, y1)− h(x, y2))| =
1

x
|g(x, d+ y1f(x))− g(x, d+ y2f(x))| 6

6
1

x
qf(x)|y1 − y2| 6

1

x
q|f(x)− f(0)||y1 − y2| = qs|y1 − y2|. (7)

Thus, on account of (7) we get for x ∈ (0, 1]

|Q1(x) −Q2(x)| = |h(x,Q1[f(x)])− h(x,Q2[f(x)])| 6

6 qs|Q1[f(x)]−Q2[f(x)]| 6 qs||Q1 −Q2||B(I,R).

Taking the supremum over x ∈ [0, 1] we obtain

||Q1 −Q2||B(I,R) 6 qs||Q1 −Q2||B(I,R).

Since we assumed that qs < 1, we have Q1 = Q2 and as a consequence we get φ1 = φ2,
which finishes the proof. ⊓⊔

Theorem 1.1 with local Lipschitz conditions on the functions f and g and with
assumption f(x) > 0 for x > 0 is formulated in J. Matkowski’s work [10] (see also [5,
Theorem 5.5.1, p. 205]). In the proof of Theorem 1.1 we obtained the existence of
a lipschitzian solution of the equation (1) from the Schauder Fixed Point Theorem.
Independently, we proved that such a solution is unique. Thus, in this situation it
seems likely, that Theorem 1.1 could be proved with the help of the Banach Fixed
Point Theorem. We are going to show, that the properties of the Nemytskij operator
enable us to formulate the following conclusion: it is possible to apply the Banach
Fixed Point Theorem only for the linear equation of type (1) (cf. [11] and [5, p. 206–
209]).

Let E and E′ be any given non-empty sets and let g : I × E → E′ be a given
function. We shall say, that g generates the Nemytskij operator

N : F(I, E) → F(I, E′),

defined in the following way

(Nφ)(x) := g(x, φ(x)), φ ∈ F(I, E), x ∈ I. (8)
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Let us again consider (this time in the context of the definition of the Nemytskij
operator), the functional equation of the form

φ(x) = g(x, φ[f(x)]), (9)

where g : I × R → R and f : I → I. Let us note that if we define S by

S(φ) := φ ◦ f, φ ∈ F(I,R),

then this definition enables us to write equation (9) in the following form

φ = (N ◦ S)φ.

Assume now, that f : I → I is a lipschitzian function. It is easy to see, that the
composition φ◦f(= S(φ)) is an element of the space Lip(I,R) for every φ ∈ Lip(I,R).
Thus S is a self-map of the space Lip(I,R). Moreover, S is a continuous, linear
operator on the Banach space Lip(I,R). We shall now prove continuity. Assume that
f(0) > 0. First, let us note that

|φ(f(0))| 6 |φ(0)|+ |φ(f(0))− φ(0)| = |φ(0)|+
|φ(f(0))− φ(0)|

|f(0)− 0|
f(0).

Thus

|φ(f(0))| 6 |φ(0)|+ f(0) sup
x1,x2∈I

x1 6=x2

|φ(x1)− φ(x2)|

|x1 − x2|

and the obtained inequality is also true in the case f(0) = 0. Moreover, let us note
that for t1, t2 ∈ I, for which the inequality f(t1) 6= f(t2) is satisfied, we have

|φ(f(t1))− φ(f(t2))|

|t1 − t2|
=

|φ(f(t1))− φ(f(t2))|

|f(t1)− f(t2)|

|f(t1)− f(t2)|

|t1 − t2|
6

6 sup
x1,x2∈I

x1 6=x2

|φ(x1)− φ(x2)|

|x1 − x2|
sup

x1,x2∈I

x1 6=x2

|f(x1)− f(x2)|

|x1 − x2|

and the inequality (obtained, on account of the assumption t1, t2 ∈ I, f(t1) 6= f(t2)):

|φ(f(t1))− φ(f(t2))|

|t1 − t2|
6 sup

x1,x2∈I

x1 6=x2

|φ(x1)− φ(x2)|

|x1 − x2|
sup

x1,x2∈I

x1 6=x2

|f(x1)− f(x2)|

|x1 − x2|

is obviously true also in the case f(t1) = f(t2). We conclude, that

sup
x1,x2∈I

x1 6=x2

|φ(f(x1))− φ(f(x2))|

|x1 − x2|
6 sup

x1,x2∈I

x1 6=x2

|φ(x1)− φ(x2)|

|x1 − x2|
sup

x1,x2∈I

x1 6=x2

|f(x1)− f(x2)|

|x1 − x2|
.

Thus

||S(φ)||Lip(I,R) = ||φ ◦ f ||Lip(I,R) = |φ(f(0))|+ sup
x1 6=x2

x1,x2∈I

|φ(f(x1))− φ(f(x2))|

|x1 − x2|
=
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= |φ(0)|+ sup
x1 6=x2

x1,x2∈I

|φ(x1)− φ(x2)|

|x1 − x2|

[
f(0) + sup

x1 6=x2
x1,x2∈I

|f(x1)− f(x2)|

|x1 − x2|

]
=

= |φ(0)|+ sup
x1 6=x2

x1,x2∈I

|φ(x1)− φ(x2)|

|x1 − x2|
||f ||Lip(I,R) 6M ||φ||Lip(I,R),

where M := max{1, ||f ||Lip(I,R)}, from which we infer the continuity of S.
Now we are going to show that f is a surjective self-map of the interval I if and

only if S maps the space Lip(I,R) injectively into itself. Assume first, that f(I) = I
and consider functions φ, ψ ∈ Lip(I,R) for which S(φ) = S(ψ). The definition of S
implies, that φ(f(x)) = ψ(f(x)) for x ∈ I. On account of surjectivity of f , every
element y in the interval I is of the form y = f(x) and we infer that φ(y) = ψ(y) for
every y ∈ I, which finishes the proof of the injectivity of the map S.

Conversely, assume that f(I) ⊆ I, f(I) 6= I. Continuity of f (which is a consequence
of the Lipschitz condition) and compactness of its domain imply that f is bounded
and

f(I) = [m,M ],

where
m := inf

x∈I
f(x),M := sup

x∈I

f(x).

The assumption f(I) ⊆ I, f(I) 6= I implies that at least one of the inequalities

0 < infx∈I f(x), supx∈I f(x) < 1 hold. Let us define f̃ : I → R by

f̃(x) =






f(m)
m

x for x ∈ [0,m], if 0 < m,
f(x) for x ∈ [m,M ](= f(I)),

1−f(M)
1−M

(x−M) + f(M) for x ∈ [M, 1], if M < 1.

Thus f̃ is an affine function on the interval [0,m] (if 0 < m) and on the interval [M, 1]

(if M¡1). Moreover, it satisfies conditions f̃(0) = 0, f̃(1) = 1 and it is a continuous

extension of the function f |f(I) to the interval I. It is also obvious, that f̃ satisfies the

Lipschitz condition. From the definition of the function f̃ we infer, that for x ∈ I the
equality f̃(f(x)) = f(f(x)) holds. Thus f̃ ◦ f = f ◦ f and we obtain equality S(f̃) =
S(f). Moreover, let us note that at least one of the inequalities 0 < f(0), f(1) < 1

holds (since f(I) 6= I), which, along with the equalities f̃(0) = 0, f̃(1) = 1 implies,

that f̃ 6= f . Thus, the equality S(f̃) = S(f) enables us to conclude, that S is not
injective.

Now, assume that f(I) = I and let S be a surjective map of the space Lip(I,R)
onto itself. Thus S is a continuous and linear bijection, for which the inverse map (on
account of the Banach Open Mapping Theorem) is also continuous. From surjectivity
of S we obtain that for every function φ ∈ Lip(I,R) there exists a function ψ ∈
Lip(I,R), for which

φ(x) = ψ(f(x))(= S(ψ)), x ∈ I.

In particular, for a function φ given by φ(x) = x for x ∈ I, there exists a function
ψ0 ∈ Lip(I,R), for which the equality
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ψ0(f(x)) = x

holds for x ∈ I. From this equality we infer that f is injective (and, in consequence,
it is a bijection), and that f−1 = ψ0, which implies that f−1 satisfies the Lipschitz
condition.

Let us assume once again that φ and ψ belong to the space Lip(I,R) and let
the equality S(ψ) = φ hold. Hence φ(x) = ψ(f(x)) for x ∈ I, which implies that
ψ(y) = φ(f−1(y)) for y ∈ I. Thus S−1(φ) = φ ◦ f−1 and this equality is satisfied for
every function φ ∈ Lip(I,R).

Conversely, if f is bijective and lipschitzian function on I, for which f−1 is also lip-
schitzian, then S is a bijective self-map of the space Lip(I,R), the equality S−1(φ) =
φ ◦ f−1 holds and the map S−1 is continuous.

Assume that we are trying to apply the Banach Fixed Point Theorem to equa-
tion (9). For this, we have to assume that N ◦ S is a contraction (with a constant
k < 1) of the space Lip(I,R) (with the lipschitzian norm). Let φ ∈ Lip(I,R). Then
S−1(φ) ∈ Lip(I,R) and (N ◦S)(S−1(φ)) ∈ Lip(I,R), since we are assuming that N ◦S
maps the space Lip(I,R) into itself. Also (N ◦ S)(S−1(φ)) = Nφ and we infer that
N maps the space Lip(I,R) into itself. Now, let φ1, φ2 ∈ Lip(I,R). Since N ◦ S is
a contraction, we obtain

||Nφ1 −Nφ2||Lip(I,R) 6 ||(N ◦ S)(S−1(φ1))− (N ◦ S)(S−1(φ2))||Lip(I,R) 6

6 k||S−1(φ1 − φ2)||Lip(I,R) 6 k||S−1||L(Lip(I,R))||φ1 − φ2||Lip(I,R).

Thus we infer, that N satisfies the Lipschitz condition. Now we shall quote the fol-
lowing Theorem of J. Matkowski [11] (see also [5, Theorem 5.5.2, p. 207]).

Theorem 1.2. Let N be a Nemytskij operator generated by a function g : I×R → R.

Conditions

1) N : Lip(I,R) → Lip(I,R),
2) there exists a constant L > 0 such that

||Nφ1 −Nφ2||Lip(I,R) 6 L||φ1 − φ2||Lip(I,R), φ1, φ2 ∈ Lip(I,R)

are simultaneously satisfied if and only if there exist functions a, b ∈ Lip(I,R) for

which

g(x, y) = a(x)y + b(x), x ∈ I, y ∈ R.

This theorem enables us to conclude, that if the operator N ◦ S is a con-
traction, then (given that f is bijective and lipschitzian along with its inverse)
Nφ(x) = a(x)φ(x) + b(x), where a, b ∈ Lip(I,R). Thus, in the nonlinear case it is
not possible to apply the Banach Fixed Point Theorem to investigate the solvability
of equation (1). Theorem 1.2 implies also, that it is possible to apply the Banach
Principle to determine the lipschitzian solution of the linear equation of the form
φ(x) = a(x)φ[f(x)] + b(x).
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2. Uniformly continuous Nemytskij operators

For given intervals I, J ⊂ R and numbers α ∈ (0, 1], x0 ∈ I let us define the set
Lipα(I, J) of all functions ϕ : I → J for which the set

{
|ϕ(x) − ϕ(y)|

|x− y|α
: x, y ∈ I, x 6= y

}

is bounded with the functional

||ϕ||Lipα = |ϕ(x0)|+ sup
x,y∈I,x 6=y

|ϕ(x) − ϕ(y)|

|x− y|α
. (10)

In [14] Matkowski has shown that if a uniformly continuous with respect to the
norm (10) superposition operator N of a generator f maps the set Lipα(I, J) into the
Banach space Lipα(I,R), then for some a, b ∈ Lipα(I,R) we have

f(x, y) = a(x)y + b(x), x ∈ I, y ∈ J.

Our main goal is to prove a counterpart of Matkowski’s result for Nemytskij operators
generated by set-valued functions with values in a set clb(Z) of all nonempty, bounded,
closed, convex subsets of a normed linear space Z.

Let (Z, || · ||) be a real, normed linear space. For a bounded A ⊂ Z one can define
a number ||A|| as follows ||A|| := sup{||z|| : z ∈ A}.

By
∗
+ we denote a binary operation in clb(Z) defined by the formula

A
∗
+B = cl(A+B),

where A+ B is an algebraic sum of A and B and clA is the closure of A. Note, that
for arbitrary A,B ∈ clb(Z) the set A+B does not have to be closed. A corresponding

example can be found e.g. in [20]. The pair (clb(Z),
∗
+) is an Abelian semigroup with

the set {0} as the zero element. We can multiply elements of clb(Z) by nonnegative
numbers and the conditions

1 · A = A, λ(µA) = (λµ)A, λ(A
∗
+B) = λA

∗
+ λB, (λ + µ)A = λA

∗
+ µA

hold for all A,B ∈ clb(Z) and λ, µ > 0. This means that the set clb(Z) with operations
∗
+ and · is an abstract convex cone. The cancellation law, i.e.

A
∗
+B = C

∗
+B =⇒ A = C

in clb(Z) follows e.g. from Theorem II-17 in [2, p. 48].
It is easy to check that (clb(Z), d) is a metric space. It is complete, provided Z

is a Banach space (cf. e.g. [2, p. 40]). It is easily seen that the Hausdorff distance is
invariant with respect to translation, i.e.,

d(A
∗
+B,C

∗
+B) = d(A+B,C +B) = d(A,C)
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(cf. e.g. [4]) and
d(λA, λB) = λd(A,B)

for all λ > 0 and A,B,C ∈ clb(Z).
We say that a subset C of a real linear space Y is a convex cone if λC ⊂ C for all

λ > 0 and C + C ⊂ C.
A set-valued function F : C → clb(Z) defined on a convex cone C is *additive

(*Jensen) if

F (x+ y) = F (x)
∗
+ F (y)

(
F

(
x+ y

2

)
=

1

2
(F (x)

∗
+ F (y))

)

for all x, y ∈ C. A function F is Q+-homogeneous if F (λy) = λF (y) for all λ ∈
Q ∩ [0,∞) and y ∈ C. We shall need the following lemmas.

Lemma 2.1 (Corollary 4 in [19]). Let C be a convex cone in a real linear space Y
and let Z be a Banach space. A set-valued function F : C → clb(Z) is *Jensen if and

only if there exist a *additive set-valued function A : C → clb(Z) and a set B ∈ clb(Z)
such that

F (x) = A(x)
∗
+B

for all x ∈ C.

Lemma 2.2 (Lemma 2 in [16]). Let Y, Z be two real, normed linear spaces and let C
be a convex cone in Y . Suppose F is a Q+-homogeneous set-valued function defined
on C with nonempty values in Z. The equality

lim
y→0, y∈C

||F (y)|| = 0 (11)

holds if and only if there exists a positive constant M such that

||F (y)|| 6M ||y|| for y ∈ C.

In the set of all Q+-homogeneous set-valued functions in C with nonempty values
in Z, satisfying condition (11) we can introduce the functional

||F || = sup
x∈C, x 6=0

||F (x)||

||x||
. (12)

By Lemma 2.2, ||F || is finite. We will call this functional a norm.

Lemma 2.3 (Theorem 3 in [18], see also Lemma 4 in [16]). Let Y be a Banach

space, Z a real, normed linear space and let C be a convex cone in Y . Suppose that
(Fj : j ∈ J) is a family of *additive, continuous set-valued functions Fj : C → clb(Z).
If intC 6= ∅ and for each y ∈ C the set

⋃
j∈J Fj(y) is bounded in Z, then there exists

a constant M ∈ (0,∞) such that

sup
j∈J

||Fj || 6M.

We say that a function α : [0,∞) → [0,∞) is an α-function, if α(t) > 0 for t ∈
(0,∞), α(0) = 0 = limt→0+ α(t), α(1) = 1 and both α and α∗, where
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α∗(t) =

{
t

α(t) for t ∈ (0,∞),

0 for t = 0,

are increasing (cf. [1, p. 182]).
Observe, that the function α(t) = tp, where p ∈ (0, 1] is an α-function.
For two α-functions α and β we write

α ≺ β ⇐⇒ α(t) = O(β(t)) as t→ 0+.

Let α be an α-function, I = [0, 1] and let C be a convex cone in a real, normed linear
space Y . The set Hα(I, C) consists, by definition, of all functions ϕ : I → C such that

hα(ϕ) := sup
s∈(0,1]

ω(ϕ, s)

α(s)
<∞, (13)

where
ω(ϕ, s) := sup{||ϕ(x1)− ϕ(x2)|| : x1, x2 ∈ I, |x1 − x2| 6 s}

(cf. [12]). By Hα(I, clb(Z)) we denote the set of all set-valued functions φ : I → clb(Z)
such that hα(φ) <∞, where

ω(φ, s) := sup{d(φ(x1), φ(x2)) : x1, x2 ∈ I, |x1 − x2| 6 s}.

Note, that all functions from Hα(I, C) and from Hα(I, clb(Z)) are continuous. In fact,
let us fix x1, x2 ∈ I and let ϕ ∈ Hα(I, C). We have

||ϕ(x1)− ϕ(x2)|| 6 ω(ϕ, |x1 − x2|) 6 hα(ϕ)α(|x1 − x2|). (14)

Since α is continuous at 0, by (13) and (14) ϕ is uniformly continuous. The same
reasoning applies to φ ∈ Hα(I, clb(Z)).

We introduce a metric ρα in the set Hα(I, C) putting ρα(ϕ, ϕ) = ||ϕ−ϕ||α, where

||ϕ||α := ||ϕ(0)||+ hα(ϕ).

In the set Hα(I, clb(Z)) one can define a metric setting

dα(φ, φ) := d(φ(0), φ(0)) + sup
s∈(0,1]

ω(φ, φ, s)

α(s)
, φ, φ ∈ Hα(I, clb(Z)),

where

ω(φ, φ, s) := sup{d(φ(x1) + φ(x2), φ(x2) + φ(x1)) : x1, x2 ∈ I, |x1 − x2| 6 s}

(cf. [17]). It may be checked that dα(φ, φ) <∞ and that dα is a metric inHα(I, clb(Z))
(cf. [6]).

Consider the set

L(C, clb(Z)) := {A : C → clb(Z) : A is ∗additive and continuous}.
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Since every *additive set-valued function A : C → clb(Z) is Q+-homogeneous, for each
A ∈ L(C, clb(Z)) we have

||A(y)|| 6 ||A|| ||y||, y ∈ C,

where ||A|| is defined by (12). Thus, for A,B ∈ L(C, clb(Z)) we have d(A(y), B(y)) 6
||A(y)||+ ||B(y)|| 6 (||A|| + ||B||)||y|| and

dL(A,B) := sup
y∈C, y 6=0

d(A(y), B(y))

||y||

is finite. It is easily seen, that dL yields a metric in L(C, clb(Z)).
Now let α, β be α-functions. We will prove (in Theorem 2.8) that a uniformly

continuous operator of substitution N mapping Hα(I, C) into Hβ(I, clb(Z)) has to
be generated by a function F : I × C → clb(Z) of the form

F (x, y) = A(x, y)
∗
+B(x),

where A(x, ·) is a *additive continuous set-valued function and A(·, y), B belong to
Hβ(I, clb(Z)).

Theorem 2.4. Let I = [0, 1] and Y be a real normed linear space, Z a Banach space

and let C be a convex cone in Y . Assume that γ : [0,∞) → [0,∞) is continuous at
0, γ(0) = 0, and the superposition operator N is generated by a set-valued function

F : I × C → clb(Z).
(a) Suppose that N maps Hα(I, C) into Hβ(I, clb(Z)) and

dβ(Nϕ,Nϕ) 6 γ(||ϕ− ϕ||α), ϕ, ϕ ∈ Hα(I, C) (15)

Then there exist functions A : I×C → clb(Z) and B : I → clb(Z) such that A(·, y), B ∈
Hβ(I, clb(Z)) for every y ∈ C, A(x, ·) ∈ L(C, clb(Z)) for every x ∈ I and

F (x, y) = A(x, y)
∗
+B(x), x ∈ I, y ∈ C.

Moreover, the inequality

d(A(x, y1) +A(x, y2), A(x, y1) +A(x, y2)) 6 γ(||y1 − y2||)β(|x − x|) (16)

holds for all x, x ∈ I and y1, y2 ∈ C.
(b) Assume that γ is increasing and the condition 1

β
≺ γ( 1

α
) does not hold. Then

the operator N maps Hα(I, C) into Hβ(I, clb(Z)) and satisfies inequality (15) if and
only if the function F is of the form

F (x, y) = B(x), x ∈ I, y ∈ C,

where B ∈ Hβ(I, clb(Z)). In this case N is a constant operator.

Proof. (a) Note, that for a given y ∈ C a constant function ϕ(t) = y, t ∈ I, belongs
to the space Hα(I, C). Since N maps Hα(I, C) into Hβ(I, clb(Z)), we have Nϕ =
F (·, y) ∈ Hβ(I, clb(Z)). Consequently, F (·, y) is continuous.
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For arbitrarily fixed y, y ∈ C, take ϕ, ϕ : I → C defined by

ϕ(t) = y, ϕ(t) = y, t ∈ I.

Then ϕ, ϕ ∈ Hα(I, C) and, by the assumption, functions Nϕ = F (·, y), Nϕ = F (·, y)
belong to Hβ(I, clb(Z)) and

||ϕ− ϕ||α = ||y − y||.

From the definition of the metric dβ there is

d(Nϕ(0), Nϕ(0)) +
ω(Nϕ,Nϕ, 1)

β(1)
6 dβ(Nϕ,Nϕ).

Therefore, by (15), for all x ∈ I:

d(F (0, y), F (0, y)) + d(F (x, y) + F (0, y), F (x, y) + F (0, y)) 6 γ(||y − y||). (17)

Since
d(F (x, y), F (x, y)) = d(F (x, y) + F (0, y), F (x, y) + F (0, y)) 6

6 d(F (x, y) + F (0, y), F (x, y) + F (0, y)) + d(F (x, y) + F (0, y), F (x, y) + F (0, y)) =

= d(F (0, y), F (0, y)) + d(F (x, y) + F (0, y), F (x, y) + F (0, y))

(17) shows that

d(F (x, y), F (x, y)) 6 γ(||y − y||) for x ∈ I.

This inequality, the continuity of γ at 0 and the equality γ(0) = 0 imply that F is
continuous with respect to the second variable.

Let us fix x, x ∈ I, x < x, y1, y2, y1, y2 ∈ C and define functions

ϕi(t) :=






yi for 0 6 t 6 x,
yi−yi

x−x
(t− x) + yi for x < t < x

yi for x 6 t 6 1

for i = 1, 2. Obviously, ϕi(I) ⊆ C. We shall prove that ϕi ∈ Hα(I, C). It is easily seen
that

ω(ϕi, s) = ||yi − yi|| for x− x 6 s 6 1,

ω(ϕi, s) =
s

x− x
||yi − yi|| for 0 6 s 6 x− x.

Since the function t 7−→ t
α(t) is increasing

sup
s∈(0,1]

ω(ϕi, s)

α(s)
=

||yi − yi||

α(x− x)
.

Hence, ϕi ∈ Hα(I, C) and ||ϕi||α = ||yi||+
||yi−yi||
α(x−x) . In particular

||ϕ1 − ϕ2||α = ||y1 − y2||+
||y1 − y2 − y1 + y2||

α(x− x)
. (18)
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From (15) and the definition of dβ :

ω(Nϕ1, Nϕ2, x− x)

β(x − x)
6 dβ(Nϕ1, Nϕ2) 6 γ(||ϕ1 − ϕ2||α)

and since ϕi(x) = yi and ϕi(x) = yi,

d(F (x, y1) + F (x, y2), F (x, y1) + F (x, y2)) 6 γ(||ϕ1 − ϕ2||α)β(x − x). (19)

Taking arbitrary u, v ∈ C and putting y1 = y2 = u+v
2 , y1 = u, y2 = v we get

||ϕ1 − ϕ2||α =
||u− v||

2

and

d

(
F

(
x,
u+ v

2

)
+ F

(
x,
u+ v

2

)
, F (x, u) + F (x, v)

)
6 γ

(
||u− v||

2

)
β(x − x).

Letting x tend to x, since limt→0+ β(t) = 0, from the continuity of F with respect to
the first variable we obtain

d

(
2F

(
x,
u+ v

2

)
, F (x, u) + F (x, v)

)
= 0,

i.e.

F

(
x,
u+ v

2

)
=

1

2
[F (x, u)

∗
+ F (x, v)]

for all x ∈ I. This shows that F (x, ·) is *Jensen, therefore there exist functions
A : I × C → clb(Z) and B : I → clb(Z) such that A(x, ·) is *additive for x ∈ I and

F (x, y) = A(x, y)
∗
+B(x), x ∈ I, y ∈ C (20)

(cf. Lemma 2.1).
To prove that A(x, ·) (x ∈ I) is continuous let us fix y, y ∈ C. We have

d(A(x, y), A(x, y)) = d(A(x, y)
∗
+B(x), A(x, y)

∗
+B(x)) = d(F (x, y), F (x, y)),

therefore, the continuity of F (x, ·) implies the continuity of A(x, ·).
From the *additivity of A(x, ·) we get A(x, 0) = {0}, whence

F (x, 0) = A(x, 0)
∗
+B(x) = B(x). (21)

Since F (·, y) ∈ Hβ(I, clb(Z)) for all y ∈ C, (21) shows that B ∈ Hβ(I, clb(Z)).
Now we shall prove that A(·, y) ∈ Hβ(I, clb(Z)) for every y ∈ C. Let us fix s ∈ (0, 1],

x, x ∈ I such that |x− x| 6 s and y ∈ C. Obviously
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d(A(x, y), A(x, y)) = d(A(x, y) +B(x), A(x, y) +B(x)) 6

6 d(A(x, y) +B(x), A(x, y) +B(x)) + d(A(x, y) +B(x), A(x, y) +B(x)) =

= d(F (x, y), F (x, y)) + d(B(x), B(x)),

whence
d(A(x, y), A(x, y)) 6 ω(F (·, y), s) + ω(B, s)

and
ω(A(·, y), s)

β(s)
6 hβ(F (·, y)) + hβ(B).

The inequality above shows now, that A(·, y) ∈ Hβ(I, clb(Z)) for every y ∈ C.
To show (16) take x, x ∈ I such that x 6 x and y1, y2 ∈ C. Setting y1 = y1, y2 = y2

in (18) and (19) we obtain

d(F (x, y1) + F (x, y2), F (x, y1) + F (x, y2)) 6 γ(||y1 − y2||)β(x − x).

Hence

d(A(x, y1) +B(x) +A(x, y2) + B(x), A(x, y1) +B(x) +A(x, y2) +B(x)) =

= d(A(x, y1) +A(x, y2), A(x, y1) +A(x, y2)) 6 γ(||y1 − y2||)β(x − x).

The obtained inequality

d(A(x, y1) +A(x, y2), A(x, y1) +A(x, y2)) 6 γ(||y1 − y2||)β(x − x)

for all y1, y2 ∈ C and x, x ∈ I, x < x is also true in the case when x > x, which
completes the proof of part (a).

(b) It is sufficient to prove necessity. Setting y1 = y2 in (18) and (19) we get

d(F (x, y1), F (x, y2)) 6 γ

(
||y1 − y2||

α(x − x)

)
β(x − x)

for all x, x ∈ I such that x < x and for all y1, y2 ∈ C. In the case ||y1 − y2|| 6 1 by
the monotonicity of γ we have

d(F (x, y1), F (x, y2)) 6 γ

(
1

α(x− x)

)
β(x − x). (22)

Since the condition 1
γ( 1

α
)
≺ β does not hold, we can find a sequence (tn), tn ∈ (0, 1],

tn → 0, such that

β(tn)γ

(
1

α(tn)

)
→ 0 as n→ ∞. (23)

Take x ∈ [0, 1) and xn := x+ tn. Then xn ∈ [0, 1] for a large enough n and xn → x.
Since F (·, y), y ∈ C is continuous, from (22) and (23) we deduce that F (x, y1) =
F (x, y2), x ∈ [0, 1] and y1, y2 ∈ C.

In the case ||y1 − y2|| > 1, fix n large enough to have 1
n
||y1 − y2|| 6 1. Setting

yi = y1+
i
n
(y2−y1), i = 0, 1, ..., n−1, we obtain ||yi+1−yi|| 6 1. By the above, we get
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F (x, yi) = F (x, yi+1) for all x ∈ I and i = 0, 1, ..., n− 1, whence F (x, y1) = F (x, y2)
for all x ∈ I and y1, y2 ∈ C. In consequence, F (x, y) = F (x, 0) =: B(x) for x ∈ I and
x ∈ C, which completes the proof. ⊓⊔

Remark 2.5. We denote by A the set of all functions ϕ ∈ Hα(I, C) of the form

ϕ(t) :=





y for 0 6 t 6 x,
y−y
x−x

(t− x) + y for x < t < x,

y for x 6 t 6 1

for some x, x ∈ I, x < x, y, y ∈ C. Theorem 2.4 remains true if inequality (15) is
assumed only for all ϕ, ϕ ∈ A.

Remark 2.6. Assuming, that γ in Theorem 2.4 is increasing does not cause any loss
of generality.

For a given γ : [0,∞) → [0,∞) we can take γ∗ : [0,∞) → [0,∞) defined by γ∗(t) =
sups∈[0,t] γ(s).

Remark 2.7. If in Theorem 2.4, γ(t) = Lt (for some constant L > 0) and the
function F maps I × C into the space cc(Z) of all nonempty, convex and compact

subsets of Z, we can replace
∗
+ by the usual algebraic sum of two sets and we get the

result obtained by J.J. Ludew in [6].

Condition (15) in Theorem 2.4 can be replaced by the uniform continuity of N .

Theorem 2.8. Let Y be a real normed linear space, Z a Banach space and C a convex

cone in Y . Suppose that the superposition operator N of the generator F : I × C →
clb(Z) maps Hα(I, C) into Hβ(I, clb(Z)) and that N is uniformly continuous. Then

there exist functions A : I × C → clb(Z) and B : I → clb(Z) such that A(·, y), B ∈
Hβ(I, clb(Z)) for every y ∈ C, A(x, ·) ∈ L(C, clb(Z)) for every x ∈ I and

F (x, y) = A(x, y)
∗
+B(x), x ∈ I, y ∈ C.

Proof. Suppose that N is uniformly continuous. Then for every ε > 0 there is δ > 0
such that for all ϕ, ϕ ∈ Hα(I, C)

||ϕ− ϕ||α 6 δ =⇒ dβ(Nϕ,Nϕ) 6 ε.

Let γ : [0,∞) → [0,∞) be defined by

γ(t) := sup{dβ(Nϕ,Nϕ) : ||ϕ− ϕ||α 6 t}, t > 0.

The function γ is well defined. Indeed, fix δ > 0 such that for all ϕ, ϕ ∈ Hα(I, C)

||ϕ− ϕ||α 6 δ =⇒ dβ(Nϕ,Nϕ) 6 1. (24)

Therefore, we have γ(t) 6 1 for all t ∈ [0, δ]. Take t > 0, s > 0, t + s > 0 and
ϕ, ϕ ∈ Hα(I, C) such that ||ϕ − ϕ||α 6 t + s. The function ψ = t

t+s
ϕ + s

t+s
ϕ also

belongs to Hα(I, C) and
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||ϕ− ψ||α =
s

t+ s
||ϕ− ϕ||α 6 s, ||ψ − ϕ||α =

t

t+ s
||ϕ− ϕ||α 6 t.

Thus, by the definition of γ

dβ(Nϕ,Nϕ) 6 dβ(Nϕ,Nψ) + dβ(Nψ,Nϕ) 6 γ(s) + γ(t)

and consequently
γ(s+ t) 6 γ(s) + γ(t).

In particular, γ(2t) 6 2γ(t), whence by induction we obtain

γ(nt) 6 nγ(t) (25)

for all n ∈ N and t > 0. For a given t > 0 there exists a positive integer n such that
t
n
< δ. From (24) and (25) it follows that

γ(t) = γ

(
n
t

n

)
6 nγ

(
t

n

)
6 n <∞.

Since N is uniformly continuous, γ is continuous at 0, γ(0) = 0 and obviously

dβ(Nϕ,Nϕ) 6 γ(||ϕ− ϕ||α), ϕ, ϕ ∈ Hα(I, C),

the result is a consequence of Theorem 2.4. ⊓⊔

The following result may be proved in the same way as Lemma 5 in [16].

Lemma 2.9. Let Y and Z be two real, normed linear spaces and C a convex cone

in Y with nonempty interior. Then there exists a positive constant M0 such that for
every continuous, ∗additive, set-valued function F : C → clb(Z) the inequality

d(F (x), F (y)) 6M0||F || ||x− y||, x, y ∈ C

holds.

The following theorem is a converse of part (a) of Theorem 2.4.

Theorem 2.10. Let Y be a Banach space, Z a real normed linear space, C a convex

cone in Y with nonempty interior and let α, β be two α-functions such that α ≺ β.
Assume that A(·, y), B ∈ Hβ(I, clb(Z)) for y ∈ C and A(x, ·) ∈ L(C, clb(Z)) for x ∈ I.
Moreover, assume that for some increasing, continuous at 0 function γ : [0,∞) →
[0,∞), such that γ(0) = 0, the inequality

d(A(x, y1) +A(x, y2), A(x, y1) +A(x, y2)) 6 γ(||y1 − y2||)β(|x − x|) (26)

holds for all x, x ∈ I and y1, y2 ∈ C. If a set-valued function F : I ×C → clb(Z) is of
the form

F (x, y) = A(x, y)
∗
+B(x), x ∈ I, y ∈ C,

then the operator of substitution N generated by F maps the set Hα(I, C) into the set
Hβ(I, clb(Z)) and satisfies inequality (15) with a function γ1, where γ1(t) = c(t+γ(t)),
t > 0 and c is a constant.
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Proof. First, we will prove that the set
⋃

x∈I A(x, y) is bounded for an arbitrary y ∈ C.
Let x ∈ I, y ∈ C. We have

||A(x, y)|| = d(A(x, y), {0}) 6 d(A(x, y), A(0, y)) + d(A(0, y), {0}) =

= d(A(x, y), A(0, y)) + ||A(0, y)||.

Moreover, since A(·, y) ∈ Hβ(I, clb(Z)),

d(A(x, y), A(0, y)) 6 ω(A(·, y), 1) =
ω(A(·, y), 1)

β(1)
6 hβ(A(·, y)) <∞.

Hence
||A(x, y)|| 6 hβ(A(·, y)) + ||A(0, y)||, x ∈ I.

Since {A(x, ·)}x∈I is a family of ∗additive and continuous functions, by Lemma 2.3
there exists a constant M > 0 such that

sup
x∈I

||A(x, y)|| 6M ||y||, y ∈ C.

Hence, and by Lemma 2.9, we deduce that

d(A(x, y), A(x, y)) 6M0M ||y − y|| (27)

for all x ∈ I and y, y ∈ C.
We shall prove now that N maps Hα(I, C) into Hβ(I, clb(Z)). Let ϕ ∈ Hα(I, C)

and x, x ∈ I. The inequality

d(A(x, y), A(x, y)) 6 γ(||y||)β(|x− x|) (28)

is a consequence of (26). From (27) and (28) we obtain

d(Nϕ(x), Nϕ(x)) = d(A(x, ϕ(x)) +B(x), A(x, ϕ(x)) +B(x)) 6

6 d(A(x, ϕ(x)), A(x, ϕ(x))) + d(B(x), B(x)) 6

6 d(A(x, ϕ(x)), A(x, ϕ(x))) + d(A(x, ϕ(x)), A(x, ϕ(x))) + d(B(x), B(x)) 6

6 γ(||ϕ(x)||)β(|x − x|) +M0M ||ϕ(x) − ϕ(x)||+ d(B(x), B(x))

for all x, x ∈ I. Since

||ϕ(x)|| 6 ||ϕ(0)|| +
||ϕ(x)− ϕ(0)||

α(x− 0)
α(x − 0), x ∈ (0, 1]

we have ||ϕ(x)|| 6 ||ϕ||α for every x ∈ I. Now take s ∈ (0, 1] and x, x ∈ I such that
|x− x| 6 s. The monotonicity of γ and β implies, that

d(Nϕ(x), Nϕ(x)) 6 γ(||ϕ||α)β(s) +M0Mω(ϕ, s) + ω(B, s).
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Therefore, for every s ∈ (0, 1] we obtain

ω(Nϕ, s)

β(s)
6 γ(||ϕ||α) +M0M

ω(ϕ, s)

α(s)

α(s)

β(s)
+
ω(B, s)

β(s)
6

6 γ(||ϕ||α) + LM0Mhα(ϕ) + hβ(B),

where L > 1 is a constant such that α(s)
β(s) 6 L, s ∈ (0, 1] (by the assumption α ≺ β).

Thus, hβ(Nϕ) <∞ and Nϕ ∈ Hβ(I, clb(Z)).
What remains to show is the fact, that N satisfies (15). Let ϕ, ϕ ∈ Hα(I, C),

s ∈ (0, 1] and take x, x ∈ I such that |x − x| 6 s. Inequalities (27) and (26) imply
that

d(Nϕ(x) +Nϕ(x), Nϕ(x) +Nϕ(x)) =

= d(A(x, ϕ(x)) +A(x, ϕ(x)), A(x, ϕ(x)) +A(x, ϕ(x))) =

= d
(
A(x, ϕ(x) + ϕ(x)) +A(x, ϕ(x)) +A(x, ϕ(x)),

A(x, ϕ(x) + ϕ(x)) +A(x, ϕ(x)) +A(x, ϕ(x))
)
6

6 d(A(x, ϕ(x) + ϕ(x)), A(x, ϕ(x) + ϕ(x))) +

+ d(A(x, ϕ(x)) +A(x, ϕ(x)), A(x, ϕ(x)) +A(x, ϕ(x))) 6

6M0M ||(ϕ− ϕ)(x) − (ϕ− ϕ)(x)||+ γ(||(ϕ− ϕ)(x)||)β(|x − x|) 6

6M0Mω(ϕ− ϕ, s) + γ(||ϕ− ϕ||α)β(s).

Hence
ω(Nϕ,Nϕ, s)

β(s)
6M0M

ω(ϕ− ϕ, s)

α(s)

α(s)

β(s)
+ γ(||ϕ− ϕ||α)

and therefore

sup
s∈(0,1]

ω(Nϕ,Nϕ, s)

β(s)
6M0MLhα(ϕ− ϕ) + γ(||ϕ− ϕ||α).

In consequence

dβ(Nϕ,Nϕ) = d(Nϕ(0), Nϕ(0)) + sup
s∈(0,1]

ω(Nϕ,Nϕ, s)

β(s)
6

6M0M ||(ϕ− ϕ)(0)||+M0MLhα(ϕ− ϕ) + γ(||ϕ− ϕ||α) 6

6M0ML||ϕ− ϕ||α + γ(||ϕ− ϕ||α).

Setting c = max{1,M0ML} and γ1(t) = c(t+ γ(t)) we get

dβ(Nϕ,Nϕ) 6 γ1(||ϕ− ϕ||α).

This finishes the proof. ⊓⊔
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